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Abstract--A balanced-surface method is proposed that allows one to test the reliability of the interpretation of 
the structural geometry of folded and faulted strata. It also estimates both the finite total displacement field 
linked to the folding and faulting processes and the finite displacement field linked to the folding. The method 
describes a thin competent folded and faulted sedimentary layer using rigid (triangular) elements, their sizes 
depending on the curvature of the surface. The elements are laid flat (and are automatically fit) to form a 
horizontal surface, which represents the initial state of the layer. The degree of compatibility (given by different 
indicators) tests the reliability of the geometric fitting of the layer. If folding and faulting occur without bed 
stretching (or if this change is known and introduced as a parameter in the code) a plausible interpretation can be 
perfectly retrodeformed, just as a folded and torn sheet of paper may be smoothed with an iron. The method has 
been applied to two natural examples in oil-field regions using three- or two-dimensional depth-migrated seismic 
data. The main results reveal in general that the petroleum company's interpretations of the data were non- 
optimal. A careful reinterpretation of the seismic data was necessary to obtain balanced folded and faulted 
surfaces. The estimation of the finite displacement fields revealed the compatibility between fold and fault 
deformation, and also the strike-slip movement or rotation associated with the deformation. 

INTRODUCTION 

IN ORDER to draw geological structures such as folds and 
faults, interpolation is generally needed between scat- 
tered data. Maintaining geometric compatibility be- 
tween data is necessary to constrain the interpolations. 
To paraphrase Ramsay & Huber (1987, p. 543), "com- 
patibility implies that the body translations, rotations 
and strains developed in a deformed mass obey geo- 
metric rules that are requisites for the rock mass to 
remain coherent after deformation". The problem is 
then to know how such geometric constraints may be 
tested. Various authors have already discussed this 
problem. The interpretation of continuous and discon- 
tinuous deformation is briefly reviewed below. 

For continuous deformation analysis, strain- 
displacement relations were given in Jaeger (1956), 
Ramsay (1967, 1976), Howard (1968) and carefully 
detailed in Ramsay & Huber (1983). A major problem 
was the interpretation of heterogeneous deformation. A 
method of spatial integration of heterogeneous strain 
within shear zones was proposed by Ramsay & Graham 
(1970). In the general case, exact two-dimensional ex- 
pressions for rotation gradients in terms of strain gradi- 
ents were derived by Cobbold (1977). With such a 
continuous deformation, true strain values are necessary 
to obtain a unique solution for the rotations, and the 
accuracy of natural strain values is usually not sufficient 
to apply these relations. 

Following another approach for the interpretation of 
heterogeneous deformation, Oertel (1974) has intro- 
duced the practical notion of domains (or finite ele- 
ments) within each of which the strain could be assumed 

to be homogeneous. Schwerdtner (1977) has shown how 
translations and rigid rotations are necessary to ensure 
maximum compatibility between finite elements. This 
finite element method was used by Oertel & Ernst 
(1978) to remove the deformation in a multilayered fold, 
the fitting of the elements being done by hand. In order 
to obtain faster and more objective restoration, a least- 
squares method to fit the elements was proposed by 
Cobbold & Percevault (1983). This method was success- 
fully applied to the removal of regional ductile strain in 
central Brittany (Percevault & Cobbold 1982). Appli- 
cation of a three-dimensional finite element method to 
strain field analyses (in an Archean greenstone belt) was 
also done by Schultz-Ela (1988). The same finite ele- 
ment analysis method was applied to a folded and 
faulted regional analysis by Gratier et al. (1989) with 
elements of about 15 x 15 km in initial size. However, in 
this last approach, since deformation must be assumed 
to be homogeneous within each finite element, the 
deformation values associated with faults must remain 
negligible compared to the deformation values associ- 
ated with folds. 

With continuous heterogeneous deformation, the 
various proposed methods are satisfactory provided that 
strain measurements can be collected. The major prob- 
lem, of course, is that the assumption of continuous 
deformation ignores continuous-discontinuous par- 
titioned deformation (such as occurs in folded and 
faulted structures). 

With structures involving both folding and faulting, a 
problem occurs in considering a set of isolated data 
(outcrops, seismic reflectors, structures in boreholes) 
which yield from place to place the exact location of a 
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Fig. 1. For a given set of data (from seismic or geological investi- 
gations) that provides the position of a competent  layer at a discrete 
number  of points in a vertical cross-section (a), different interpolations 
for the geometry of the layer (thick line segments) may be done, either 
continuously (b) or discontinuously (c & d). In the latter case, the dip 
of the fault (thick dashed line) is not constrained by the available data. 
If the initial length of the layer (lo) is known or constrained by 
neighbouring data, it is possible to choose among the different interpo- 
lations (here the interpretation given in c is the best:/o(C) = lo). This is 
the principle of the balanced cross-section construction technique, 
with a plane strain assumption. In order to balance a folded and faulted 
layer, the same approach using a trial and error method is proposed 

(see Fig. 2). 

folded and faulted layer (Fig. la). There are always 
several possibilities of how to draw this layer (how to 
interpolate between the scattered data): either continu- 
ous interpolation between the data (Fig. lb) or discon- 
tinuous interpolation (with faults). In the latter case the 
boundaries of the faults are generally difficult to estab- 
lish (Figs. lc or d, for example) since data are not always 
well-constrained near faults. 

If both the initial length of the layer and the depth of 
the d6collement surface are known, and applying the 
assumptions of conservation of volume, surface and 
length of the strata (Chamberlin 1910, Goguel 1952), it 
may be possible to choose between various interpola- 
tions by a trial and error method. This is the efficient 
principle of balanced cross-sections (Dahlstrom 1969, 
Hossack 1979). Several authors have developed com- 
puter programs for section balancing (e.g. Groshong & 
Usdansky 1986, Jones & Linsser 1986, Kligfield et al. 

1986, Medwedeff & Suppe 1986, De Paor 1988, Moretti 
& Larrere 1989). Such balanced cross-section construc- 
tion methods are limited, however, to two dimensions 
with a plane strain assumption. If this assumption is 
correct when the axial directions of fold hinge lines and 
the strike of the faults are more or less parallel, it 
generally becomes invalid in arcuate fold and fault zones 
(Ramsay & Huber 1987). 

Assuming simple fault and fold kinematics, for 
example, if all the slip vectors for the faults (Barr 1985) 
or flexural-slip folds (McCoss 1988) have parallel map 

projections, direct three-dimensional restoration is 
possible. However, in this case the simplicity of the 
kinematics limits the application of the method. 

In summary, the test of geometric compatibility of the 
data is, in principle, very simple (Ramsay & Huber 1987, 
p. 543); the geometric features of any folded and faulted 
stratum must be restorable to an initial undeformed 
state without loss of volume (or with a known volume 
change). With three-dimensional folded and faulted 
strata, the problem is then first to restore the folded 
zones to their undeformed state, and secondly to fit the 
unfolded zones along the faults. As for section balanc- 
ing, this must be done by a trial and error approach 
which allows the integration of the entire available data. 
At the end of the process a balanced geometric interpre- 
tation is obtained which allows one to estimate a finite 
displacement field. 

PRINCIPLE OF THE METHOD 

A well-drawn sedimentary layer, folded and faulted 
without change of thickness, and without stretching 
parallel to its neutral surface, can be unfolded and 
restored to its initial horizontal state, just as a folded and 
torn sheet of paper may be smoothed with an iron, 
where the elements are fitted without voids and over- 
laps. If such a fit cannot be obtained with a natural layer, 
this means either that the assumption of the non- 
elongation of the surface was not correct, or that the 
interpretation of the data was non-optimal. The first 
hypothesis may generally be tested by structural studies; 
if strain values are measured these values may be in- 
cluded in the restoration, or the choice of the layer must 
be limited to a folded and faulted competent layer 
without bed stretching. 

When considering only the folded zones the validity of 
the constant bed-length assumption may be directly 
tested by the isotrend analysis proposed by Lisle (1992). 
Following the Gauss' Theorema Egregium the non- 
stretch condition for a fold is that the total curvature 
(equal to the product of the two principal curvatures) at 
any point remains invariant under isometric bending. 
Several authors such as Bennis et al. (1991), Leger et al. 

(1991) and Lisle (1992) propose the use of this method to 
distinguish between developable and non-developable 
folds. The problem, which is the same as in our 
approach, is that for a given data set there are two 
possibilities for non-developable surfaces: either bed 
stretching or non-optimal interpolation between the 
data. The application of this method to the restoration of 
a developable surface is also suggested by Lisle (1992), 
but two practical difficulties have to be overcome: "(i) 
the restoration by rotation has to be carried out for the 
whole sheet since the change of orientation of part of the 
sheet depends on the integrated rotation involved in 
other points of the sheet, and (ii) the unrolled configur- 
ation depends on the choice of the starting point for 
unrolling". Our approach is to unfold the sheet with a 
finite element method. This allows one to overcome the 



Computational restoration of folded and faulted strata 393 

first problem. Nonetheless the second problem remains, 
and we have to choose one fixed element. 

For our approach, the test of a plausible geometric 
interpretation needs three successive steps. 

--First ,  the scattered data is interpolated by partition- 
ing the entire folded and faulted surface into folded 
zones described by a single-valued X Y Z  relation (one Z 
value for each X Y  pair), with a regular Cartesian X Y  
grid. This allows one to describe the surface by a 
network of triangular elements configured in columns 
and rows. 

--Second, each part of these folded zones is restored 
to a horizontal surface, by laying fiat the triangles 
column by column. To do this a Fortran computer code 
was created (named UNFOLD),  which runs on work- 
stations (IBM RISQ 6000 and SUN SPARC), Gratier 
(1988), Gratier et al. (1991), Guillier (1991). 

--Third,  all of these unfolded zones are fitted together 
with minimal voids and overlaps along their edges. In 
our work the third step of fitting together the unfolded 
parts is not automatic, it is simply done by trial and error 
using an interactive graphics program which allows one 
to translate and rotate the unfolded zones. 

--Finally, the comparison between the finite de- 
formed state and the restored initial state allows one to 
estimate the finite displacement field associated with the 
folded and faulted structure. 

Interpolation 

The first step of the program is a description of the 
folded surface. When considering a folded and faulted 
layer (Fig. 2a), the program cannot unfold and restore 
the entire surface at the same time. A cut-out of the layer 
is needed in order to obtain both a regular Cartesian X Y  
grid and a single X Y Z  relation within each folded block 
(Fig. 2b). Some types of block boundaries are obvious, 
such as fault boundaries (thick lines A-B and A-C  in 
Fig. 2a). But a cut-out is also necessary from one fault tip 
to another, or from a fault tip to an external boundary 
(dashed line A-D,  Fig. 2a). In such a case, the cut line 
may be drawn perpendicular to the contour lines of the 
surface in order to obtain an unfolded surface with 
regular boundaries. Another type of boundary is needed 
when the same layer exists several times on the same 
vertical line (e.g. the overturned limb of a fold; thrust 
fault). In such cases the most practical cut can be made 
by following the line of vertical dip of the strata (dashed 
line E-F,  Fig. 2a). By following these rules, each folded 
block is then bounded by faults, vertical layers, or lines 
of maximum slope, and may then be digitized on a 
digitizing table following the contour lines on maps, or 
using successive cross-sections (if the boundaries of the 
blocks are well defined). 

Interpolation is done using a cubic spline function (de 
Boor 1978) included in a graphics program (GREG,  
Guilloteau & Valiron 1986). Such interpolators have 
already been used for geological applications (Evans et 
al. 1985). Another method has also been proposed using 
a rotated cubic interpolator (McCoss 1987), which 

necessitates a less powerful computer. However, a cubic 
spline function has already been included in the graphics 
G R E G  package, and it runs rapidly enough on our 
workstation. The accuracy of the interpolation step is 
estimated by the value of an interpolation indicator, 
which expresses the discrepancy between the initial data 
and the interpolated surface (the Z value associated with 
each X Y  position of the initial data set is compared with 
the interpolated Z value at the same XY position). A 
usual range of values for this indicator is about 0.001- 
0.02%. These values depend both on the number of 
triangles and on the distribution of the initial scattered 
data. 

Unfolding 

Interpolation gives a regular Cartesian X Y  grid which 
allows one to describe the folded surface by a network of 
triangular finite elements parallel to this surface. The 
program of unfolding may then begin: each of the 
triangular elements is successively laid fiat, column by 
column, to restore the initial horizontal surface of the 
layer. 

Three types of triangle are used (Fig. 3) (Gratier et al. 
1991). 

- -The  first type is defined by the first triangle (hatched 
triangle, Fig. 3a), its location is fixed without constraints 
at the beginning of the process. 

- -The  second type consists of triangles with only one 
neighbour (white triangles, Fig. 3a); each triangle is 
simply attached to its neighbour by their two common 
vertices. 

- -The  third type consists of triangles with two or more 
neighbours (shaded triangles, Fig. 3a). This type of 
triangle is fitted in the triangular hole defined by its 
neighbours in a manner that minimizes voids and over- 
laps between the triangular element and the triangular 
hole (Fig. 3b). When the triangular hole is defined by 
more than three points (up to 15 vertices after the first 
fitting, see Fig. 3c), a mean value is calculated for each 
cluster of vertices in order to have three mean vertices. 

Automatic fitting of plane elements has already been 
discussed by several authors, such as Etchecopar (1977) 
and Cobbold (1979). With our computer program, a 
simple algorithm is used to calculate the position of each 
triangle in order to obtain a minimum value of the sum 
(D) of the square of the distances between the three 
vertices of each triangle and those of the triangular hole 
defined by its neighbours. Fitting is obtained both by 
translation and rotation, The minimum value of D is 
obtained when its partial derivatives (translation along 
X and Y and rotation) are simultaneously equal to zero. 
To minimize the D value by translation, the two centres 
of gravity of the two triangles (element and hole) must 
coincide (Etchecopar 1977). To minimize the D value by 
rotation, the value of the angle between the two tri- 
angles was calculated (Gratier et al. 1991). This relation 
and its associated parameters are given in the Appendix. 

The code is able to treat successive columns of various 
length, using the two-vertices and three-vertices 
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Fig. 2. Principle of the three-dimensional balance technique of a folded and faulted layer; illustrated in three successive 
steps. (a) The initial data set is a thin folded and faulted competent layer described by contour lines on a map (left) or by 
cross-sections (right). A global perspective (centre) is given in order to best visualize the data. G is a common point between 
the two types of representation, and the overturned limb (shaded) is not represented on the map or the cross-sections. The 
aim of the program is to test the geometric compatibility of this first interpretation. (b) A partition of the entire layer into 
folded zones with a single-valued X Y Z  relation (one Z value for each X Y  pair) is first needed, then an interpolation is done 
in order to obtain a regular X Y  Cartesian grid describing each folded zone bounded by faults (thick lines A-B ,  A--C in a) or 
by the cut out of the initial folded area (dashed lines A - D ,  G-F,  E - F  in a). (c) Each part of the folded zone is then unfolded 
by the computer program (UNFOLD,  Fortran code running on a workstation). (d) Finally, the unfolded blocks are fitted 
together by a trial and error approach with an interactive graphics program on a workstation. An optimal interpretation of 
the data leads to an initial horizontal state without any voids and overlaps. This, of course, is possible only if the layer was 
deformed without elongation along its neutral surface (or with known values for this elongation, since such values may be 

integrated into the program). 
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Fig. 3. After  each folded surface (Fig. 2b) is segmented into triangu- 
lar elements generated from points on a regular Cartesian grid, all the 
triangles are laid flat, column by column. (a) First fitting iteration with 
three types of triangles. Hatched triangle is the first triangle arbitrarily 
fixed. White triangles are triangles with one neighbour,  attached by a 
common side to the preceding triangle in the laid-flat sequence. 
Shaded triangles are those with two or more neighbours. These 
triangles are fitted into a triangular hole defined by its neighbours in 
the laid-flat sequence. The number  in each triangle indicates its rank 
for fitting. (b) Fitting of a triangular element ABC in a triangular hole 
defined by its neighbours A ' B ' C '  (see the Appendix).  For each pair of 
triangles (e lement-hole)  a fitting value (f)  is estimated as the ratio 
(D/M), M being the mean value of the median length. A mean value of 
the fitting indicator (F) can also be expressed for the whole surface. (c) 
Successive iterations are done (i) until the mean fitting indicator value 
(F) ceases to decrease (see Fig. 4b), or (ii) until F reaches a given 
value, or (iii) until a t tainment  of a given number  of iterations. During 
these iterations, most of the triangular elements are fitted into tri- 
angular holes defined by neighbour triangles (shaded), and during 
each iteration the new position of each triangle is used to fit the 

following one. 

methods given above. The laid-flat succession of tri- 
angles is shown in Figs. 3(a)-(c), where the number in 
each triangle indicates its rank for fitting. After a first 
fitting of all the triangles, an approximate initial state of 
the layer is obtained (Fig. 3a). Several additional fittings 
are then done. At this stage (Fig. 3c) almost all of the 
triangles have more than one neighbour and the mini- 
mum distance algorithm may be used more systemati- 
cally. For the second iteration, and for all of the 
following iterations, the position of each triangle calcu- 
lated in a given iteration is used in the same iteration to 
calculate the position of the following triangles. This 

method is similar to the Gauss-Seidel method, as was 
pointed out by Cobbold & Percevault (1983). Each 
iteration calculates the distance (D) between the ver- 
tices of each triangle and those of its hole. For a given 
element-hole triangular pair, the ratio between the sum 
of the distance between vertices (D) and the mean 
length of the medians of the triangular element (M) is 
named the fitting indicator (f), and it gives the reliability 
of the unfolding process. This fitting indicator value can 
be expressed either as a mean value for the whole 
surface (F), or as local value (f) for each of the triangle 
pairs (element-hole). In the latter case a distribution 
map of the local value is calculated (Guillier & Gratier 
1991) (see example in Fig. 4c). To end the iterative 
process of unfolding three types of parameter may be 
used: (i) the number of iterations may be fixed; (ii) the 
value of the mean fitting indicator, at the last iteration, 
may be specified (at the beginning of the process); or (iii) 
it is possible to let the mean fitting indicator reach its 
minimum value (in this case, as soon as this value begins 
increasing, after n iterations, the process is stopped, see 
example Fig. 4b). 

In order to estimate the usual range of fitting indicator 
values, various tests have been done on theoretical, 
experimental and natural folded structures (Guillier & 
Gratier 1991). The problem is to clearly distinguish 
between the unfolding of a developable surface and that 
of a non-developable surface. 

(1) Developable surfaces are unfolded without any 
problems. An example of the unfolding of a natural 
layer is given in Fig. 4(a). The evolution of the F value 
for such a surface described by 24,000 triangles (example 
given in Fig. 9b), is shown in Fig. 4(b). The iterative 
process converges relatively fast, from a mean fitting 
value of 3% at the first fitting to a minimum value of 
0.08% after 6600 iterations. The distribution of the 
values of the local fitting indicator (f) is rather homo- 
geneous, with values ranging from 0.76 to 0.001% (Fig. 
4c). It has to be noted that, with such a developable 
surface, it is not worth trying to reach a minimum value 
for F. The various tests show that with a value of F of 
about 0.2% and with a homogeneous distribution of the 
local fitting value (with a maximum value below 1-2%), 
the surface is unfolded with sufficient accuracy. Such 
fitting is usually obtained after some hundred iterations. 
In fact, as shown in Fig. 4(a), the difference between the 
boundaries of an unfolded developable surface after the 
first iteration (dashed line) and after 6600 iterations 
(solid line) is not very large. 

The effect of direction on the successive restoration of 
the triangles was also tested by unfolding either parallel 
or perpendicular to the fold axes. For a developable 
surface with high dip values in the fold limbs (folded 
sheet of paper), there is an effect, but it is not significant 
with respect to the shape of the restored surface, since it 
remains below the approximation introduced by the 
segmentation of the surface into finite elements (Gratier 
et al. 1991). Therefore any side of the folded surface may 
be chosen as the first row to be laid flat. However, an 
elementary bit of caution is the avoidance of a corner 
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Fig. 4. Example of the unfolding of a developable natural layer (a-c) 
and examples of trying to unfold non-developable surfaces (d). For the 
unfolding of a naturally folded layer (given in Fig. 9b), the boundaries 
of the layer in the deformed and restored states are given in a map view 
(a): dotted line = deformed state, dashed line = restored state after 
the first iteration, solid line = restored state after 6600 iterations (the 
enlargement shows the triangles after the first iteration). With such a 
developable surface, the geometry after the first iteration is very 
similar to the geometry after several thousand iterations. (b) The 
evolution of the F value vs the number of iterations (N) (the best fit, 
minimum F value was obtained after 6600 iterations). (c) The distri- 
bution of the local fitting values, shown in a perspective view; these (f) 
values are relatively homogeneous between 0.76 and 0.001%. (d) 
Example of a non-optimal unfolding process when trying to unfold a 
non-developable surface (surface with small part of a dome). The 
boundaries of the zone are given in map view: dotted line = deformed 
state, dashed line = restored state after the first iteration, solid line = 
restored state after 600 iterations (the enlargement shows the triangles 
after the first iteration). With such a non-developable surface, the 
geometry after the first iteration is very different from the geometry 
after several hundred iterations. The mean fitting value, F, remained 

high (2.5 %) and so did the maximum local fitting value, f (20%). 

with local, highly dipping strata in the first row. In some 
instances the first row may be imposed as a straight line. 

(2) It was also interesting to test the program on a non- 
developable surface, such as a dome-shaped surface. 
Fortunately, in most cases, the program failed; the 
triangles could not be fitted, since after a few columns 
were laid fiat no space was available to fit further 
triangular elements into the holes defined by previously 
processed triangles. 

It may occur that a non-developable surface (a surface 

with only a small part of a dome) may be unfolded by the 
program, in which case it may then possibly be confused 
with a strictly developable surface. In this case, the 
values of the fitting indicators are very different from 
those of a truly developable surface. For example, in 
Fig. 4(d), the mean fitting indicator value reaches 2.5%, 
and the maximum local fitting indicator value (for the 
least well-fitted pair of triangles) reaches 20%. Such 
values clearly indicate a non-optimal unfolding run. 

Another  test, shown in Fig. 4(d), is the large differ- 
ence between the boundaries of an unfolded, non- 
developable surface after the first iteration (dashed line) 
and after several hundred iterations (solid line). 
Another  problem with such surfaces, which are non- 
developable but which can be (non-optimally) unfolded, 
is that the process often does not converge to a single 
minimum value but may show successive local minima. 
This indicates an instability in the process (linked to the 
strong heterogeneity of size of neighbouring triangles). 
In this case, there is an effect of the direction of unfold- 
ing, and the unfolded surface shows a strong asymmetry. 
Some change in the processing order of the laid-flat 
succession, or a large number of iterations, could per- 
haps reduce this asymmetry. We believe such non- 
developable surfaces should not be unfolded, except 
when the bed stretching values are known. In such a case 
the strain values can be used to change the shape of the 
triangular elements before the laying-flat process. This 
possibility is integrated in our program but we have 
never found a documented natural example to test it. 

The program must only be able to recognize non- 
developable surfaces. As noted above the various tests 
have indicated that a mean fitting value of about 0.2% 
and a homogeneous distribution of the local fitting 
values (with maximum values below 1-2%) are suf- 
ficient for a surface to be unfolded. If a given natural 
layer is unfolded yielding higher values for the fitting 
indicators there are, at least, two possibilities: (i) with 
very well-constrained data bed stretching may be sus- 
pected; and (ii) with non-optimally constrained scat- 
tered data the structure contour map may need 
amending. 

Restoration 

In our approach, the third step of fitting together the 
unfolded blocks (Figs. 2c-d) is not automatic; it is simply 
done, using an interactive graphics program by trial and 
error. An automatic fitting program for rigid blocks has 
been developed by Audibert  (1990) and Rouby et al. (in 
press). It may be useful as a complement to our code, but 
it is not absolutely necessary in a trial and error method 
since we will show that the major problem is related to 
the misinterpretation of the initial data set (see appli- 
cation to natural structures). 

When proceeding by such a trial and error method, 
the various types of fold zone boundaries may be treated 
differently. For example (Fig. 2), the boundaries corre- 
sponding to the cut-outs of initially continuous folded 
zones (e.g. vertical strata and cut-outs between two fault 
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Fig. 5. First example from the continental Americas. (a) Data from successive depth-migrated seismic cross-sections were 
available as structure contour maps of two competent folded and faulted layers (see also Fig. 6a). The contour interval is 
200 m. Only the upper layer is shown here, with a hanging-wall zone (left) and a footwall zone (right). The dashed lines 
indicate the boundaries of the available data; arrows with numbers indicate the locations of the seismic cross-sections. The 
square symbol is explained in Fig. 6. (b) Unfolding of the two zones showing the change in shape (black coloured regions) 
between the folded and unfolded zones (in map view). (c) First fit of the two unfolded blocks of the upper level. Large voids 
remain along the fault boundaries. (d) Best fit of the two unfolded blocks after reinterpretation of the initial geometry (Fig. 

5a). Extrapolation of the layer is shown on the cross-sections of Fig. 6(a) (dashed lines). 

tips, drawn as dashed lines) must have exactly the same 
length on the two parts of neighbouring zones. By 
contrast,  the true fault boundaries (thick lines) may 
present some misfits if the interpretation is non-optimal. 
By the trial and error method successive unfoldings of 
the same layer (after different interpretations of the data 
set) may be very helpful in constraining the geometry of 
this layer. 

APPLICATIONS TO NATURAL STRUCTURES 

We have applied our method to several naturally 
deformed structures from oil field areas. Two examples 
without locations (for proprietary reasons) are given 
here. 

Area of folds and thrusts 

The first example is an oil field area in the continental 
Americas.  Two-dimensional depth-migrated seismic 
data were used to define two competent  layers near a 
thrust fault (in several dozen transverse sections and 
several longitudinal sections). An example of the avail- 
able data is given in Fig. 5(a), which is a structure 
contour map of the upper  level, and four cross-sections 
are given in Fig. 6(a). The thrust fault (sections Nos 4 
and 8) fades away laterally and becomes a continuously 
folded surface (section No. 12) which also dies out near 
the southern limit (section No. 15). 

The first step of the study was to insure against a non- 
optimal interpretation of the structures, by testing the 

geometric compatibility of the folded and faulted struc- 
ture. The second step was to establish the finite displace- 
ment  field. After  making cut-outs, digitization and 
interpolation, four folded blocks (described by 12,000- 
18,000 triangles) were unfolded. Each folded zone was 
unfolded without a problem: minimum fitting indicator 
values, F, were obtained after about 2000-4000 ite- 
rations, and they were very low (0.025-0.05%). Also, 
local fitting values were homogeneous.  The mean fitting 
values are between those obtained by unfolding a theor- 
etical fold (0.005%) and a folded sheet of paper  (0.2%). 
This indicates that these two competent  layers are 
developable surfaces. If  the folding process occurred 
without bed stretching this means that the shapes of the 
layers are geometrically plausible. The displacement 
values associated with the unfolding process show two 
types of change from south to north. For the upper level, 
the hanging-wall folded surface (left, Fig. 5b) shows an 
increase in displacement from south to north; in con- 
trast, the footwall folded surface (right, Fig. 5b) shows 
relatively constant displacement all along its entire 
length. The same change was observed for the lower 
layer. 

A major  problem arose when fitting was done along 
the faults (Fig. 5c). This fitting was done with the 
following constraints: for the upper  layer, two points 
along the thrust fault are well known. The first is an 
outcrop (white square Figs. 5a and 6a) located between 
sections 4 and 5 at the hanging-wall cut-off. The second 
is the termination of the folding zone (cross, at the 
southern part ,  which the two initial zones share, Figs. 5 
and 6). When respecting these imposed constraints the 
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Fig. 6. Finite displacement field associated with the restoration of the first example. (a) The four cross-sections give the 
geometry of the two competent layers which are continuously folded in the southern part (section Nos 12) and associated 
with a thrust fault in the northern part (sections Nos 4 and 8). The continuous lines are the geometry as provided by the 
petroleum company, the dotted line is the eroded part of the upper layer, and the dashed lines are the modifications 
introduced by the balancing. A hanging-wall cut-off of the upper layer against the thrust fault occurs in outcrop (white 
square, section 4) 2500 m above the given layer (see also, Fig. 5a). (b) Finite displacement field, for the upper layer, 
obtained by a comparison of the present (deformed) state (Fig. 5a) and the initial (restored) state (Fig. 5d). Arrows indicate 
the total displacement (fault + fold) and the thick parts of the arrows indicate the displacement linked to folding. The 
dashed line indicates the western limits of the footwall, the black square the tip of the thrust fault, and the cross the southern 
termination of the fold zone which accommodates the thrusting movement laterally. (c) Finite displacement field, for the 

lower layer, with the same legend as (b). 
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fit was not good because large voids remained between 
the two unfolded zones. Strike-slip displacements, act- 
ing as transfer faults, could account for this misfit, but 
such structures do not appear on the oil company struc- 
tural map. Assuming continuous thrust movement,  the 
voids may have two explanations. (i) The part between 
the outcrop and the northern part of the region is simply 
linked to the erosion of the layer. The missing area has to 
be added between this outcrop and the eastern limit of 
the hanging-wall surface (dotted line, Fig. 6a, section 4, 
upper level). (ii) Alternatively, the part between the 
outcrop and the southern part of the region is presently 
underground and the misfit may result from a non- 
optimal interpretation of this layer. 

Examination of the seismic sections supports the idea 
of adding area to the hanging-wall surface, but the exact 
eastern boundary of this folded surface does not appear 
clearly. To determine the length of the layer added in 
each cross-section, the following rules were used: (i) the 
eastern part of the (unfolded) footwall was considered as 
fixed; (ii) the southern common part (cross in Fig. 5a) 
was considered as the pole of rotation of the (unfolded) 
hanging wall; and (iii) the hanging wall was rotated in 
order to put the known boundary of this zone (the 
outcrop, see Figs. 5a and 6a) into contact with the 
western boundary of the (unfolded) footwall. The modi- 

fications introduced on the sections are shown in Fig. 
6(a), (dashed lines). These modifications allowed us to 
redraw both the boundaries of the hanging wall of the 
thrust (sections 4 and 8, Fig. 6a) and the shape of the fold 
at the southern termination of the fault (section 12, Fig. 
6a). A new unfolding and fitting run was tried (Fig. 5d) 
which gave better results than the first run (Fig. 5c). 
Nonetheless, very small voids and overlaps remained. 
Using the same value for the rotation angle (8°), the 
lower layer was also reinterpreted. Then it was unfolded 
and restored also with a satisfactory fit between the two 
initial zones. Of course it should be possible to redraw 
the two layers once more, as carefully as possible, in 
order to obtain the optimal representation of this oil 
field. Reinterpretation could include a review of the 
depth migration on the seismic sections. In addition, we 
note that the estimated volume of oil reserves is signifi- 
cantly increased by our interpretation. 

After the balanced interpretation, the two states of 
the structure, before deformation (Fig. 5d) and after 
deformation (Fig. 5a), were matched in order to draw 
the finite displacements associated with the defor- 
mation. The finite displacement field (Figs. 6b & c) 
shows the (relative) rotation of the hanging wall vs the 
footwall. Comparison between the displacement associ- 
ated with the fold (thick parts of the arrows, Figs. 6b & c) 
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and the total finite displacement (arrows, Figs. 6b & c) 
clearly shows that the folds and the thrust have compar- 
able displacement fields. However, the folding process 
contributes only a small amount (2 °) to the total rotation 
(8°). The geometry of the structure, with the lateral 
accommodation of the thrust movement by a fold, 
suggests that during the progressive rotation associated 
with the thrust development, the fold termination of the 
thrust may have laterally propagated along the present 
thrust line from the north (initial displacement) to the 
south (present state). 

Area of tilted-folded blocks, normal faults and strike-slip 

Another example is given, again in an oil field area, 
but in this case true three-dimensional depth-migrated 
seismic data were used to obtain the geometry of a 
competent layer. This structure is in an area of extension 
(offshore Asia). The data set also comprise a structure 
contour map of a reflective horizon (Fig. 7a), with fault 
zones coloured black. Two cross-sections give the struc- 
ture according to the first petroleum company interpre- 
tation of the seismic data (Figs. 8a & b). The whole area 
was subdivided into 22 folded zones following the rules 
given earlier: the blocks are limited either by faults 
(thick lines, Fig. 7a) or by cut-outs of the folded zones 
(dashed lines, Fig. 7a). 

The 22 tilted-folded zones, described by 8000-24,000 
triangles, were individually unfolded without problems. 
The minimum values of the mean fitting indicator were 
obtained after about 2000-6600 iterations (see Fig. 4a), 
and they are very low (0.15-0.08%), ranging between 
those of the theoretical folded zone (0.005%) and those 
of the folded sheet of paper (0.2%). It should be noted 
that, for most of the surfaces, a low mean fitting indi- 
cator value (0.1-0.2%) was obtained after only several 
hundred iterations. All of these surfaces were then 
considered to be both geometrically plausible and de- 
formed with little elongation. 

As in the previous example a problem arose when 
fitting the unfolded blocks (Fig. 7b). Unlike the preced- 
ing example, however, no geometric constraint (tip 
point, outcrop) was available to help with the fitting. In 
such a case several possibilities for fitting exist, depend- 
ing on the relative amounts of overlaps and voids. When 
random errors on the block boundaries are assumed, it 
seems logical to search for an equilibrium between 
overlaps and voids by minimizing the distance between 
the fitted blocks. This is the principle of automatic 
fitting: our automatic fitting of triangular elements and, 
on another scale, the automatic fitting of blocks in the 
program of Audibert (1990) and Rouby et al. (in press). 
With several tens of thousands of elements representing 
the folded surface, it is possible to search for an equilib- 
rium between voids and overlap at the scale of the 
triangles during the unfolding process. But the assump- 
tion of random error, at the scale of the unfolded blocks, 
is only valid if an optimal drawing of the boundaries of 
the blocks can be assumed. When interpreting seismic 
data, the possibility of drawing a reflective layer of 

excessive length is not equal to the possibility of missing 
a part of the same layer (see also the first example, where 
a fitting without overlap is constrained by outcrop). In 
such a case, the first step requires careful reinterpre- 
tation of the data in order to choose a strategy for fitting, 
for example, choosing a first fit without overlap. 

The strategy for the first fitting (Fig. 7b) in the second 
example was as follows. Seven seismic cross-sections 
were available for reinterpretation: on the line-drawings 
of the sections the length of the reflective layer could not 
be significantly reduced because all of the drawn reflec- 
tors seemed to be correctly interpreted. On the other 
hand, this length might be locally increased on some 
sections (Fig. 8d) in which the first interpretation missed 
a large part of the lower graben structure. In this case the 
reinterpretation of the data allows one to redraw the 
geometry of the faults and then to modify the geometry 
of the folded zone. Unfortunately, the small number of 
available sections did not permit the complete redrawing 
of the layer. A new fault pattern was proposed which 
respects the strikes of the faults in the original pattern, 
but introduces modifications to the fault dips, and conse- 
quently to the areas of the folded zones (Fig. 7c). It must 
be noted that only slight overlaps appear locally in the 
best first-fit sequence (Fig. 7b). This corresponds to 
some zones where the reinterpretation of the seismic 
data allowed us to decrease the length of the layer. 
However, in the most general case this reinterpretation 
led to an increase of the length of the layer (see Fig. 8). 

It must also be noted that the general rule, given in the 
Introduction, of exact fitting for the artificial (cut-out) 
boundaries of the blocks and, in contrast, of allowing 
possible misfits for the block boundaries corresponding 
to faults was generally followed except for one of the 
artificial boundaries (in the southern part of the area). 
This boundary, which is the extension of a real NW-SE- 
trending fault, is shown as a dashed line (cut-out) in Fig. 
7(a) and as a thick line (fault) in Fig. 7(c). 

The resulting fault pattern given in Fig. 7(c) is then the 
best balance between the available data and the geo- 
metric compatibility of the folded and faulted layer. Of 
course there is the possibility of reinterpreting the whole 
structure by returning to the entire available data set for 
a better fit. The present state (Fig. 7c), however, of the 
folded and faulted layer may be considered as a balanced 
surface (in the same sense as a balanced line length on a 
cross-section, with respect to the available data). 

The main aim of methods such as those applied here is 
to obtain the finite displacement field associated with the 
deformation. A finite displacement field was drawn by 
comparing the initial state and the restored state (the 
restored state is that given in Fig. 7b when voids and 
overlaps are removed by corrections to the geometry of 
the folds and faults). Displacement is estimated assum- 
ing that the upper part of the region is fixed (Fig. 7d). Of 
course, this is only a relative displacement since the 
translation and the rigid rotation of the whole area are 
not known. The finite displacement field presents a clear 
curvature in the eastern part. Finite displacement is 
trending NNW-SSE in the western part of the region 

S6 15:3/5-K 
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Fig. 7. Second example from offshore Asia. (a) Representation of a folded and faulted competent layer drawn from three- 
dimensional depth-migrated seismic data, in map view with contour lines (folded zones) and black zones (faults). The 
contour interval is 10 m. (b) Map-view restoration of each part of the folded layer, and first fit along the faults. The black and 
stippled areas represent, respectively, voids and overlaps along the fault boundaries, which may be removed by a new 
interpretation of the data set. A careful revision of the seismic interpretation, on seven cross-sections, indicates a non- 
optimal interpretation of the data (see two examples in Fig. 8), as a result of which a new fault pattern was proposed. (c) 
Finite displacement field linked to the unfolding, and the new fault pattern after reinterpretation of the data. Arrows 
indicate only the direction of unfolding. (d) Finite total displacement (from folds and faults) obtained by comparison 
between the present (deformed) state (a) and the initial (restored) state (b), after correction of voids and overlaps. The 
dashed line indicates the northern fixed boundary. The lengths of the thick lines indicate the values of finite displacement, 
the arrows indicate the sense of this displacement along the southern limit of the region. A clear difference appears between 
the eastern and the western parts of the entire region, with a curved dextral strike-slip fault (dotted line) in the median part 

(this fault was suggested in the first interpretation shown in a). 
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Fig. 8. Two vertical cross-sections through the structure shown in Fig. 7. (a) & (b) The geometry is as proposed by the 
petroleum company after the first interpretation of the three-dimensional seismic data. (c) & (d) New geometry after 

reinterpretation of the seismic data. 

and WNW-ESE in the eastern part. If we now compare 
the finite displacement field (which is the sum of the 
displacements linked to folding and faulting) with the 
displacement field associated only with folding in each of 
the blocks (see Fig. 7c, and two examples given in Fig. 
9), the two displacement fields are clearly compatible. 
This suggests the simultaneous development of folds (or 
more precisely tilting) and faults. The curved dextral 
strike-slip fault (given in the first structural interpre- 
tation of the oil company, Fig. 7a) is then confirmed by 
this restoration. 

CONCLUSIONS 

After the presentation of the principles and some 
applications to naturally folded and faulted layers, it is 
useful to recall the assumptions, the limits, and the rules 
of the proposed balanced surface method. 

--The unfolding of any layer may be done (even 
layers with bed stretching) providing that finite strain 
values are known at all points. However, since in most 
cases, strain values are not available, the folded and 
faulted layer chosen must be one in which no bed 
stretching occurred during the deformation (develop- 
able layer). Structural evidence may be found for a given 
layer to test this assumption. Most often, significant bed 
stretching values are associated with the development of 
penetrative and parallel structures (such as stylolites, 
solution cleavage seams and tension gashes) throughout 
the whole thickness of the layer. The choice of a refer- 
ence layer without such structures is required. 

\ 

® ® 
Fig. 9. Map view of the finite displacement associated with the unfold- 
ing of two zones from offshore Asia (locations given in Fig. 7). The 
direction of displacement (thick lines between the deformed and the 
restored states, see Fig. 4a) varies greatly, from a WNW-ESE dis- 
placement direction (for the east zone) to a NNW-SSE displacement 

direction (for the west zone). 

--The test of the program on natural examples shows 
that such assumptions are possible for competent layers 
deformed under shallow crustal conditions (within the 
first 5-6 km of depth for competent layers such as 
limestones or sandstones). The natural folded zones 
were unfolded without problems, resulting in lower 
values of the fitting indicators than for the example 
utilizing a folded sheet of paper. This attests both to the 
validity of the non-elongation assumption and to the 
possible optimal drawing of folded surfaces using seis- 
mic data and cubic spline interpolators. 

--No significant effect is associated with the direction 
of unfolding when unfolding a developable layer. In 
contrast, a strong effect of the direction of unfolding is 
observed when trying to unfold a non-developable layer. 
With such a non-developable layer the unfolding process 
requires the input of bed stretching values (see above). 

--For the two given examples (and in other field 
studies which cannot be published for proprietary 
reasons), large misfits appear along the faults that are 
due to the non-optimal interpretation of seismic data 
near the faults. Returning to the seismic line-drawing 
allows one to choose the best first-fit strategy. For 
example, the first fit along faults may not require an 
equilibrium between voids and overlaps if the return to 
the data confirms that the voids correspond to reflective 
area missed during the first interpretation and if the 
length of the first interpreted reflector cannot be 
reduced. When interpreting seismic data the possibility 
of drawing an excess length of a reflective layer is not 
equal to the possibility of missing part of this same layer; 
it depends on the context. 

--With respect to finite displacement fields, this study 
of natural examples shows that such displacements can- 
not be obtained directly from the given data, even with 
very sophisticated data such as three- or two- 
dimensional depth-migrated seismic data. It is always 
necessary to return to the data in order to redraw 
carefully the geometry of the folded and faulted surface 
by a trial and error method. Then, by comparison 
between the balanced folded and faulted layer and its 
restored initial state, a finite displacement field may be 
calculated (with an unknown bulk rotation and trans- 
lation). 

- -For the two given examples, folding and faulting are 
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geometrically compatible during progressive deforma- 
tion. Another constraint for such natural examples 
could be the use of other types of data, such as paleo- 
magnetic measurements (for rotation-distortion), geo- 
detic measurements, seismic focal mechanisms and stri- 
ations on faults (for the displacement a!ong the faults). 

Regarding the further development of this program, 
two kinds of approach will be possible. 

--When the d6collement surface is known, a true 
three-dimensional balance is possible, since the trans- 
ferred volume may be estimated. 

--When the geometry of superimposed layers, de- 
formed by successive steps of a progressive deformation, 
is available, the kinematics of the deformation can be 
obtained. Such examples can be found in which exten- 
sion may be registered by the earliest layers and contrac- 
tion by all of the layers. In this case, a step-by-step 
restoration of the successive events will give the step-by- 
step displacement field. 
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APPENDIX 

The fitting of a triangular element ABC in a triangular hole defined 
by its neighbours A 'B 'C ' ,  is done as follows. 

The following definitions are used (see Fig. 3): M~, Ma,, Mb, Mb,, 
Me, Me,, are the lengths of the medians from G (the coincident center 
of mass of the triangular element and triangular hole), a = angle 
AGA',  fl = angle B'GB, y = angle CGC'. The minimum value of D 
(sum of the square of the distance between the vertices of the two 
triangles) is obtained (Gratier et al. 1991), when: 

tan a = --(Mb " Mb' " sinfl + Mc • Me, • sin 7)/ 

(Ma • Ma' + Mb • Mb' • COS fl + Mc " Me, • cos y). 

For each pair of triangles (element-hole) a fitting value (f) is 
estimated as the ratio (D/M), M being the mean value of the median 
length. A mean value of the fitting indiactor (F) can also be expressed 
for the whole surface. 


